Fourth Order Compact Boundary Value Method for Option Pricing with Jumps
نویسندگان
چکیده
We consider pricing options in a jump-diffusion model which requires solving a partial integro-differential equation. Discretizing the spatial direction with a fourth order compact scheme leads to a linear system of ordinary differential equations. For the temporal direction, we utilize the favorable boundary value methods owing to their advantageous stability properties. In addition, the resulting large sparse system can be solved rapidly by the GMRES method with a circulant Strang-type preconditioner. Numerical results demonstrate the high order accuracy of our scheme and the efficiency of the preconditioned GMRES method. AMS subject classifications: 65T50, 65M06, 65F10, 91B28
منابع مشابه
Option Pricing in the Presence of Operational Risk
In this paper we distinguish between operational risks depending on whether the operational risk naturally arises in the context of model risk. As the pricing model exposes itself to operational errors whenever it updates and improves its investment model and other related parameters. In this case, it is no longer optimal to implement the best model. Generally, an option is exercised in a jump-...
متن کاملFinancial Applications of Symbolically Gener- ated Compact Finite Difference Formulae
We introduce the standard fourth order compact finite difference formulae. We show how these formulae apply in the special case of the heat equation. It is well known that the American option pricing problem may be formulated in terms of the Black Scholes partial differential equation (PDE) together with a free boundary condition. Standard methods allow this problem to be transformed into a mov...
متن کاملHigh-order ADI scheme for option pricing in stochastic volatility models
We propose a new high-order alternating direction implicit (ADI) finite difference scheme for the solution of initial-boundary value problems of convection-diffusion type with mixed derivatives and non-constant coefficients, as they arise from stochastic volatility models in option pricing. Our approach combines different high-order spatial discretisations with Hundsdorfer and Verwer’s ADI time...
متن کاملCompact finite difference scheme for option pricing in Heston’s model
We present a compact high-order finite difference scheme for option pricing in the well-known Heston stochastic volatility model. The scheme is fourth order accurate in space and second order accurate in time. This is also confirmed by the numerical experiments that we present.
متن کاملNumerical Methods of Option Pricing for Two Specific Models of Electricity Prices
In this work, two models are proposed for electricity prices as energy commodity prices which in addition to mean-reverting properties have jumps and spikes, due to non-storability of electricity. The models are simulated using an Euler scheme, and then the Monte-Carlo method is used to estimate the expectation of the discounted cash-flow under historical probability, which is considered as the...
متن کامل